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“On the Theory of Collisions between Atoms and Electrically Charged Particles”

Note by: Enrico Fermi, 1924

Appeared in Nuovo Cimento 2 ,pp143-158 (1925)

(translated from Italian by Michele Gallinaro and Sebastian White, NewYork
2001)

When an atom, in its normal state, is illuminated with light of the appropriate frequency,
it can be excited, which is to say that it goes to a quantum state of higher energy, absorbing
a quantum of light. If the quantum of the exciting light is greater than the energy needed
to ionize the atom, it can be ionized losing, depending on the light frequency, an electron of
either the superficial layers or those deep within the atom. During the phase of relaxation of
the atom there is emission of light and, depending on the circumstances, it is possible to obtain
the phenomena of optical resonance or fluorescence. Some natural phenomena, very similar to
these, occur also during excitation by collision.

In fact, if the atoms in a gas are bombarded with electrons of high enough velocity, they
can be excited or ionized. They also can lose, if the velocity of the bombarding electrons is very
large, some electrons belonging to the innermost layers of the atom.

The scope of the present work is to further specify the analogies (existing) between these
two classes of phenomena, and to quantitatively derive the phenomena of excitation by collision
from those of optical absorption. Therefore, we consider that when a charged particle passes
near a point, it produces, at that point, a variable electric field. If we decompose this field, via
a Fourier transform, into its harmonic components we find that it is equivalent to the electric
field at the same point if it were struck by light with an appropriate continuous distribution
of frequencies. If we now imagine that, at that point, there is an atom, the hypothesis occurs
quite naturally, that the electric field of the particle produces on the atom those same effects of
excitation or ionization that the equivalent light would produce.

Let us suppose that we know the absorption coefficient for light by the atom, as a function
of frequency. We would then have a way to calculate the probability that a charged particle,
passing with a given velocity at a given distance from an atom, will ionize it. It seems, on
the other hand absolutely necessary to introduce a limitation to this correspondence between
the electric field of the light and that of a charged particle. We note, in fact, that a particle of
velocity,v, cannot produce phenomena, by collision, which require an energy greater than its own
kinetic energy. If, instead, we perform a harmonic decomposition of the electric field it produces,
we see that it will include all possible frequencies, including the highest ones. Therefore we must
accept that all frequencies whose quantum, hν, is greater than the particle’s kinetic energy can
have no effect (since not enough energy is available to supply an entire quantum).

We have applied our hypothesis to three phenomena that allow experimental verification.
They are:
a) Excitation of the line 2537 (a resonance line) of mercury. The optical absorption of this
line is known with sufficient precision. Experiments also exist that give, at least to an order of
magnitude, the probability that atoms of mercury bombarded with slow electrons are excited.
Our theory gives for this probability the right order of magnitude. Naturally, given the limited
precision of the experimental data, a precise test of the theory through these phenomena is not
possible, but the case nonetheless is of some interest since no other theory of the excitation, by
collision, of a quantum state exists, only theories of ionization by collision.
b) The number of ion pairs produced per cm of path length by α-particles from Radium-C in
Helium. We chose Helium because, being a monatomic gas, and possessing only k-shell electrons,
it’s possible to know with some precision its absorption coefficient as a function of frequency.
The agreement between experiment and theory is very good. The previous theories of ionization
by collision are all based on a principle different from the present theory. The essential point of



those theories can be summarized in the following way: when a charged particle passes within
the vicinity of an atom it transfers to the electrons of the atom a fraction of the particle’s
energy. The energy transfer is calculated assuming, typically, that the electrons are free within
the atom. One then allows the electron to be detached from the atom every time that the energy
transferred to it via this mechanism is greater than the ionization energy of the atom.
c) The path length in Helium of α’s from Radium-C. The mechanism of this phenomenon is,
according to our theory, the following: the α particle creates, along its path, a variable electric
field whose energy is absorbed by the surrounding atoms, as if it were the electric field of a
light wave. The energy, which is thus absorbed, has to obviously be subtracted from the kinetic
energy of the αtparticle which is thus decelerated. Also, in this case, the agreement between the
theoretical and experimental values is excellent. Previously, the deceleration of α particles in
matter had been studied theoretically by Thomson and by Bohr. The former interpreted it as
due to the fact that the α particle, attracting electrons of the surrounding atoms along its path,
transfers to them a fraction of its kinetic energy. Since, on the other hand, when one calculates
this energy as if the electrons were free, one finds an infinitely large deceleration, Bohr redid
the calculation assuming that the electrons inside the atoms were no longer free, but bound
by quasi-elastic forces. In this way he finds a good agreement with experiment, taking for the
frequency of this binding, as the case may be, optical or x-ray (Roentgen) frequencies.

In the second section of this work we establish some general formulas for the calculation of
the “field of light” that produces an electric field equivalent to that of the particle.

In the third, fourth and fifth sections we discuss the application to a), b) and c).
II. Let’s calculate, first of all, the spectral distributions corresponding to those of the electric

field created by a particle with electric charge, ε, passing with velocity, v, at a minimum distance,
b, from a point, P. The components of the electric force, at P, parallel and perpendicular to the
motion of the particle, are:

E1 =
εvθ

(b2 + v2θ2)3/2
, E2 =

ε · b
(b2 + v2θ2)3/2

(1)

Where θ is the time-elapsed starting from the passage of the particle at the minimum distance
from P. Taking now T to be a time that we will later extend to infinity, we can expand E1 and
E2 in a Fourier series for all values of θ between –(1/2)T and +(1/2)T.

We then find:

E1 =
∑

an sin
2πn
T

θ, E2 =
∑

bn cos
2πn
T

θ (2)

where

an =
2εv
T

∫ T
2

−T
2

θ sin 2πnθ
T dθ

(b2 + v2θ2)3/2
, bn =

2εb
T

∫ T
2

−T
2

cos 2πnθ
T dθ

(b2 + v2θ2)3/2
(3)

The electric field, an sin(2πnθ/T) is now equal to the electric field of a light wave with
intensity c/4π × a2

n/2 and frequency ν=n/T. We now let I(ν)dν be the light intensity in a
frequency interval dν, multiplied by the duration, T, of its action. We find
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The integrals that appear in this expression can be represented through the modified Bessel
functions of the second kind of order zero and one. Explicitly we have:
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3
2

= 2ωK1 (ω)
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3
2

= −2ωK0 (ω)

With these formulae we immediately find
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v4
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where we substitute for brevity

B (ω) = K2
0 (ω) +K2

1 (ω)

and we then find:
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8πcε2ν2

v4
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(
2πνb
v

)
(5)

Since all the frequencies whose quantum is larger than the kinetic energy of the particle
cannot, according to our hypothesis, have any effect, we find finally that the charged particle’s
passage is equivalent to the following spectral distribution

I (ν) =

{
8πcε2ν2

v4 B
(

2πνb
ν

)
, hν ≤ 1

2mv
2

0 · · · · · · , hν > 1
2mv

2
(6)

III We now want to show, using a simple example, the application of the general method:
therefore we will study the excitation by collision of spectral lines. For example, we consider an
atom of mercury, and take α(ν) to be its absorption coefficient at the frequency ν. This means
that if the atom is struck by light of intensity I(ν )dν it absorbs, on average, the energy α (ν
)I(ν )dν and therefore the absorption probability of a quantum hν is

α (ν) I (ν) dν
hν

(7)

Since the absorption at the resonance line corresponds to the excitation of the atom to the 2p
state, we find that (7) represents the excitation probability if only the frequencies in the interval
dν would be effective. The probability Π(b) for the excitation to be caused by the passage of
the particle at a distance, b, is naturally smaller than the sum of all the probabilities obtained
from the individual frequency intervals dν when one treats these as independent. One easily
finds thata

aEffectively the probability that the atom doesn’t absorb any quantum is:

1−Π (b) =
∏(

1− I (ν)α (ν) dν

hν

)
In which the product must be extended over all the infinitesimal intervals dν.
Taking the logarithms of both sides we find in the limit

log (1− Π(b)) =
∑

log

(
1− I (ν)α (ν) dν

hν

)
= −

∫
I (ν)α (ν) dν

hν

From which we obtain equation 8.



Π(b) = 1− e−
∫

I(ν)α(ν)dν
hν (8)

Since, in the case of the resonance, α(ν) has a value different from zero only in a very narrow
band near the resonance frequency νo , we can write∫

I (ν)α (ν) dν
hν

=
α

hν0
I (ν0)

where we use

α =
∫
α (ν) dν

Equation (8) can therefore be written, in this case as:

Π (b) = 1− e
− α

hν0
I(ν0) (8′)

To derive from this an observable directly accessible to experiment, we calculate the effective
radius, ρ, of the atom for resonant excitation. That is to say the equivalent radius needed to
obtain the same overall excitation probability if the excitation probability where unity within
this radius. This radius is evidently given by

πρ2 = 2π
∫
bdbΠ(b) .

We therefore find, keeping in mindbequation (6), that for 1
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The integral can be evaluated approximatelyc and one finds
bEffectively an electron, which passes with low velocity near an atom, will be strongly scattered by it. Since

we are only after the order of magnitude, we’ll apply equation (6) anyway.
cTo find an approximate expression for :
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−αB (x)
)

xdx

for α � 1, we observe that when x < 0.4 one has with sufficient accuracy B(x)=1/x2. For α < 1 and x > 0.4
one can set
1 – e−αB(x) = α B(x)
We can then write
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The numerical calculation gives us for the second integral 0.973 x α.
The first can be calculated easily using the asymptotic expressions for the logarithmic integral and one finds

that it has the value:

−α

2
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We then obtain finally:
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2
logα

)
α.
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Experimentally the excitation by collision of the resonance line 2537 of mercury was studied
by Miss Sponerd

Unfortunately this work gives us only the order of magnitude of the excitation probability.
In fact, Sponer reached the conclusion that in the collisions of electrons having velocity not much
greater than 4.9 volts, with atoms of mercury, inelastic collisions amount to a few percent of all
collisions. To calculate ρ using (9’) we take for v a velocity corresponding to a potential of 8
volts; the value of α can be obtained from a work of Fuchtbauer. This author finds, in fact, that
when a mercury atom is illuminated with an amount of light having the spectral distribution
I(ν), the absorption probability of a quantum of “resonance light” is PI(νo) where P = 8·10−7.
Evidently α = Phνo, and therefore α = 6 · 10−4. Equation (9’) gives us then

ρ = 0.8 · 10−8.

This value is considerably larger than that found by Sponer. If, in fact, we take the fraction
of inelastic collisions to be as large as 9% we still find, for ρ, the value 0.4 · 10−8 which is about
half as large as what we calculated.

On the other hand, it is easy to understand the reason for this discrepancy. When, an
electron of velocity equivalent to a few volts passes at a distance of the order of magnitude of
10−8cms from an electron, it is already strongly scattered in such a way that its distance of
closest approach is considerably larger than if it had remained on its original trajectory. One
then understands that the error made in neglecting the deflection leads to an overestimate of
ρ. Since, on the other hand, the uncertainty in the measurements excludes anyway a precise
test of the theory, and with the present hypotheses, we obtained the right order of magnitude
for ρ, it seems superfluous to attempt a more precise calculation which certainly would be more
complicated.

Ionization phenomena by collision can be explained in a very similar way. It is known that
all atoms beyond the limit of their principal series exhibit, both in absorption and emission,
a continuous spectrum, corresponding to the transition of the valence electron to the state in
which it is ionized and furthermore possesses some kinetic energy. The spectrum consists of a
reasonably broad band. It has a sharp cutoff towards the red due to the limit of the principal
lines and is blurred towards the violet. If, now, the velocity of the colliding electron is such
that the frequency mv2/2h lies beyond the absorption band, it is still possible, as a rough
approximation, to apply equation (9’) also for the calculation of the equivalent radius of the
atom for ionization effects; if instead the limiting frequency falls within the absorption band
the radius will naturally be smaller than found with (9’) and will finally go to zero when the
frequency mv2/2h coincides with or falls below the limit of the principal series. Qualitatively
this behavior of ρ as a function of v is confirmed by the experimente. Unfortunately it seems
impossible to pursue it quantitatively because precise data on the intensity of the continuous
absorption spectrum are not available.

IV. Instead, it is considerably simpler to calculate the ionization produced by α particles.
In fact, α -particles, because of their considerable mass, are hardly deflected and one can, to a
good approximation, use Eq. (6). The empirical results on absorption in the region of Roentgen
rays can be summarized with the following formula:

dHertha Sponer, ZS.f. Phys. 7,p.185,1921.
eNettleton, Proc.Nat.Acad.Amer.10,140(1924)



α (ν) =
KZ4

ν3
+D (10)

where α (ν) represents the atomic absorption coefficient, D is the term of the absorption due
to [Compton] scattering, Z is the atomic number, and K is a coefficient, which exhibits some
discontinuities at the edge of the series. For values of ν larger than the threshold, νo, of the
k-series we have K=0.6×1030, while for ν < νo, K=0.1 × 1030. From here one derives that the
contribution to the absorption due to ionization from the k-shell, is

α (ν) =

{
0, ν < ν0
HZ4

ν3 , ν > ν0
(11)

H represents, naturally, the discontinuity of the K coefficient when we cross the threshold
for the k series. One has therefore:

H = 0.5 × 1030.

The probability Π(b), for an α -particle to ionize the k-shell can be calculated with Eq. (8).
Since the mass of the α -particle is very large, we can substitute the upper limit mv2/2h, with
∞. Thus we find:

Π (b) = 1− e
− 8πcε2HZ4

hv4
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The equivalent radius can be calculated with the formula
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where for brevity one puts

α =
8πcε2HZ4

hν0v4
(14)

The integrals in (13) can be calculated approximatelyf for α� 1, and one finds
fWe need to calculate
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When α < 0.1 one can break up I into an integral from 0 to 0.4 and another from 0.4 to infinity. The first can
be calculated observing that for, ξ < 0.4 we can substitute with reasonable approximation,
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log α
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We want to apply this formula to calculate the ionization of Helium by α -particles from
Radium-C. Since Helium possesses k-shell electrons, and [the k-shell] is complete, (Eq. 13’) will
be applicable, always taking H = 0.5 x 1030. Corresponding to the ionization potential of 24.5
volts, we have νo = 6.0 x 1015; and for α-particles from Radium-C,

ν = 1.98 · 109. We therefore find α = 0.0091 ; with this value one finds

ρ2 = 0.56 × 10−16 ρ = 0.75 × 10−8

The number of ion pairs produced per cm by the particle is naturally πρ2n where n = 2.6 x
1019 represents the number of atoms per cm3 at 15oC.

The agreement between theory and experiment is quite satisfactory; in fact, we observe that
by chance the agreement is better than could be foreseen given the precision of the data.

In fact the large uncertainty, especially in the coefficient H, could easily account for a dis-
crepancy of 20% and perhaps more.

V. An additional experimental confirmation of our theory can be found in the treatment of
deceleration of α-particles in matter. We’ll also apply this method to He for which, as was seen
earlier, it is possible to find a reasonable value for the absorption coefficient.

First of all we want to calculate the average energy loss that an α -particle undergoes
passing at a distance, b, from an atom. Let Π(b) be the probability that the particle passing at
a distance, b, ionizes the atom, and P(b,ν)dν be the probability that would exist for the atom
to be ionized, if only frequencies in the interval, dν were effective. The probability that the
ionization takes place with the absorption of a quantum of frequency ν is then:

Π (b)× P (b, ν) dν
∞∫
0
P (b, ν) dν

This ionization corresponds to an energy loss hν . The average energy loss of the particle is
therefore:

Π (b)×

∞∫
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∞∫
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du

u2
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3ξ2
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and then the asymptotic expressions for the logarithmic integral can be applied. The second integral can instead
be approximately written as

α

∞∫
0,4

ξ2dξ − αξ

∞∫
ξ

du
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B (u)

The coefficient, α, calculated numerically is 0.28. Thus we find

I = α
(
0.45− 1

6
logα

)
.

This number is then 4800. Instead, experimentally, one finds 4600.



If n represents the number of atoms per unit volume, the particle passes, during path 1,
within a distance of b to b+db from 2πn b db atoms. If T is it’s kinetic energy, we have

dT

dx
= −2πn

∞∫
0

bdbΠ(b)

∞∫
0
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∞∫
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(15)

now we have
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1
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ν
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formula 16 now becomes, with a simple transformation, keeping in mind Eq. (14)
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When α is very small these expressions can be evaluated approximately and one finds:g
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and since T = (1/2) mv2, we find then
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= −cε
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4
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From this expression we can easily derive a formula which gives us the path-length travelled
by the particles while their velocity is reduced from its initial value, vo, to the final value, v.
Explicitly one finds.

x = − mν2
0

cε2HZ4n

v0∫
v

v3dv

0, 96 − log hν0v4

8πcε2HZ4

= 2.4
mν0

nh

0,104hν0v4
0

cε2Z4∫
0,104hν0v4

cε2Z4

du

log u
(18)

Naturally this formula is valid only when both limits are large with respect to unity, since
otherwise (17’), from which we derived (18) is not applicable, and we would then need to calculate
(16) exactly also for large values of α. However, we can calculate the path-length in Helium

gTo calculate this integral we need to use (for ξ < 0, 4) the approximate expressions.

∞∫
ξ

du

u2
B (u) =

1

3ξ2
− 0, 64,

∞∫
ξ

du

u
B (u) =

1

2ξ2
− 0, 64

Furthermore it is convenient to divide the integral into a term from 0 to 0.4 which can be easily calculated
using the asymptotic expressions for the logarithmic integral. To calculate the second term from 0.4 to infinity,
one needs only to observe that for ξ > 0, 4and α very small we can take:

1− e
−αξ

∞∫
ξ

du
u2 B (u)

= αξ

∞∫
ξ

du

u2
B (u)



of α-particles from Radium-C when their velocity is reduced by half. In fact, substituting in
eqn.18 m = 6.6 x 10−24; νo = 6.0 x 1015; n = 2.6 x 1019, ε= 2 x 4.77 x 10−10 = 9.54 x 10−10;
vo = 1.98 x 109; we find:

x = 0.56
288∫
18

du

log u
= 32

Since the range [English word used in the original] of α-particles of velocity vo/2 is equal
to about 1/8th of the range of particles with velocity vo, we immediately deduce for the latter
37cm.

Experimentally we find, in good agreement with this theoretical value, a range of approxi-
mately 33 cm.
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